Red Alert 2 RULES.INI Guide Part 1

Sections Covered

[General]

[JumpJetControls]

[SpecialWeapons]

[AudioVisual]

[CrateRules]

[CombatDamage]

[Radiation]

[ElevationModel]

[WallModel]

[General]

UIName=

Reference name of this INI file as contained in the RA2.CSF file. Appears to have little or no reference.

Name=

Plain text entry which specifies the name of this file. Does not appear to be used by the game, although since Red Alert it has been stated that you can differentiate between RULE files by naming them RULE*.INI (with * being a DOS wild card, that is any standard ASCII character). In this case, the Name= entry is used to differentiate between them although I have not seen this used.

Veteran Factors

VeteranRatio=

This determines the multiple of any units' self value that it must destroy to increase one rank up the ladder (see VeteranCap= on how to define number of steps on the ladder). The units 'self value' is defined by it's Cost= entry, so if a unit had Cost=10 and you set VeteranRatio=10.0 then the unit will be promoted one step when it destroys 100 credits worth of other units. This does not have to be enemy units - it could destroy neutral things or even it's own things if 'force fired' and still get the bonus.

VeteranCombat=

Multiplier which determines the bonus to the Damage= caused by each of the units' weapons with each rank it increases.

VeteranSpeed=

Multiplier which determines the bonus to the units' Speed= with each rank it increases.

VeteranSight=

Multiplier which determines the bonus to the units' Sight= with each rank it increases. This is set to '0' in both games, seemingly because values above 10.0 cause crashes. This may be related to the obsolete Fog Of War logic from Tiberian Sun and the Gap Generator logic in Red Alert 2.

VeteranArmor=

Multiplier which determines the bonus to the units' Strength= with each rank it increases. Note that this does not mean the unit gets much more protection, as the effect is to make it take longer to destroy the unit when it is at full strength.

VeteranROF=

Multiplier which determines the bonus to the ROF= of the unit's Primary= and Secondary= weapon types with each rank it increases.

VeteranCap=

Integer which determines the maximum number of ranks that a unit can aspire to. With each successive rise in rank, the unit will continue to accumulate the above bonuses until it reaches the highest rank (specified by this number). The default is '2' which represents Little Experience (0), Veteran (1) and Elite (2). Changing this will cause issues with the abilities granted to each unit with the VeteranAbilities= and EliteAbilities= statements, as well as the ElitePrimary= and EliteSecondary= statements.

Repair And Refit

RefundPercent=

Percentage of the Cost= value of the structure to be refunded when it is sold. Also applies to vehicles if sold from a Service Depot/Repair Bay although as far as I can tell that logic does not work in Red Alert 2.

ReloadRate=

Number of minutes it takes to reload each ammo pip for units when docked with their co-ordinating structure (eg aircraft types docked with a helipad).

RepairPercent=

Percentage of the units' Cost= that it will cost the player (in credits) to fully repair this unit from badly damaged (ie health bar is red) when it is docked with a UnitRepair=yes structure. No unit gets repaired for free (unless of course you use a repair vehicle or mechanic).

RepairRate=

Minutes between applying the next step of repairing a structure. The purpose of this is to cause a delay during the repair loop so that the structure does not instantly repair when you click on it.

RepairStep=

This is the number of Strength= points to restore with each step in the repairing process.

URepairRate=

Minutes between applying the next step of repairing a vehicle (unit). The purpose of this is to cause a delay during the repair loop so that the vehicle does not instantly repair.

IRepairRate=

As above but for infantry types. This is used for SelfHealing=yes units.

IRepairStep=

This is the number of Strength= points to restore with each step in the healing process for infantry types.

TiberiumHeal=

Number of minutes between which to apply healing at the rate defined by IRepairStep and IRepairRate when the unit is stood in Tiberium (Ore). Although parsed in Red Alert 2, this is not used, as it only works with units that have TiberiumHeal=true set in their entry, and this is not a valid keyword in Red Alert 2 as it was in Tiberian Sun.

Income And Production

BuildSpeed=

Number of minutes it takes to produce an item costing 1000 credits.

BuildupTime=

Average number of minutes that structure build-up animations run. Although it is parsed (and therefore should not be deleted) this is not used much in Red Alert 2, as being a DirectX-based application it derives this value from the average frame rate (FPS). It is also not necessary because the Normalized=yes statement that appears in many animations' ART.INI entries ensures that this animation sequence is timed to coincide with the FPS.

GrowthRate=

Number of minutes to elapse between Ore growth if TiberiumGrows= is set to 'yes' in the [MultiplayerDialogSettings] section.

SeparateAircraft=

Although parsed in Red Alert 2, it does not get used because structures with Helipad=yes set now have more than one docking location. If set to 'false', this means that you get an aircraft with a helipad when it is produced which may work if the Helipad only has one docking location.

SurvivorRate=

Fraction of the cost of a building which is used to be converted to infantry units when it is sold or destroyed. The infantry you get is determined by the Crew= statement (see Misc). For example, say you have a building costing 1000 credits to construct. That building gets destroyed, and SurvivorRate= is set at 0.1 - this means that 100 credits will be used to 'purchase' survivors. If Crew= is set to 'E1' you will get 100 credits worth of E1 units (in this example, 1 GI). Note: this is not used when you sell a building, only when it is destroyed, because the credits you get when you sell a building (as defined in RefundPercent= above) gives more control over this variable.

AlliedSurvivorDivisor=

Should be a value from 0 - 100. The divisor into SurvivorRate= used to determine the number of survivors for Allied armies. In the above example, you could set SurvivorRate= to 0.2 which would yield 200 credits worth of survivors instead, then set this value to 50 and you would only get 100 credits worth (ie 1 GI). This can be used to manipulate the ratio of survivors and is useful if you have implemented a strong economy system but don't want a load of survivors from destroyed structures as a result.

SovietSurvivorDivisor=

Should be a value from 0 - 100. The divisor into SurvivorRate= used to determine the number of survivors for Soviet armies. In the above example, you could set SurvivorRate= to 0.2 which would yield 200 credits worth of survivors instead, then set this value to 50 and you would only get 100 credits worth (ie 1 Conscript). This can be used to manipulate the ratio of survivors and is useful if you have implemented a strong economy system but don't want a load of survivors from destroyed structures as a result.

HarvesterDumpRate=

Number of minutes it takes for an Ore Miner to empty it's load when docked with an Ore Refinery.

HarvesterLoadRate=

Number of minutes it takes for an Ore Miner to fill itself with Ore when engaged in the mining process.

PlacementDelay=

The number of minutes to pass before the AI tries to place an object on the map if a temporary blockage is detected (for example a moving unit is in the way). Can be used to slow down or speed up the rate of AI base production.

WeedCapacity=

The amount of weed that needs to be collected by a Weed Eater (or any unit defined as such) and deposited into a Waste Facility required to make a Chemical Missile. With a lot of work, this can be made to work in Red Alert 2 although it is a little buggy when the Chemical Missile is launched.

HarvestersPerRefinery=

This was hardcoded in previous C&C games but can now be used to define how many Ore Miners the AI should build to service each refinery it has. This is used in map files to override the TeamTypes used by the AI and gives the AI a little more 'intelligence'. For example, take two maps - one has an abundance of Ore, the other has very little. If the comp only builds one Ore Miner when it plays on the map with little Ore, it's resources will be limited very quickly and income will be slow because the human player will build lots of Ore Miners to grab what little Ore there is very quickly. If the comp builds more Ore Miners on the same map, it will gather all that Ore quicker meaning the human player will have to destroy those Ore Miners to gain control of the Ore fields, and that in turn triggers a lot of AI attack events. In short, this tries to make the comp act more 'human' when gathering resource depending on the map it plays on, and helps when engaged in Mega Wealth mode by over-riding the AI Auto Production triggers thus preventing it making more harvesters when they are not needed.

Computer And Movement Controls

CurleyShuffle=

Can be set to 'yes' or 'no' and determines if Helicopters should do the 'suicide shuffle' between shots as in Tiberium Dawn. If set to 'no', helicopters simply hover near their target and continually attack until they run out of ammo or destroy it.

BaseBias=

This represents the multiplier to the threat target value of an enemy object when it is close to your base, meaning it will take a higher priority when base defenses and units in a defense mission evaluate potential targets. Increasing this value makes the AI more sensitive to threats against it's base(s).

BaseDefenseDelay=

Time, in minutes, between the AI sending response teams to deal with threats to it's base(s). These response teams are usually AI TeamTypes from the AI.INI file which have been specifically recruited for this purpose.

CloseEnough=

If an AI controlled unit is trying to get a location which is blocked, it will abort movement when it gets this close (in cells) to that intended destination. This stops the AI hanging up and trying to move units into blocked cells.

DamageDelay=

Time, in minutes, between applying trivial structure damage when low on power.

GameSpeedBias=

This figure is a multiplier to overall game object speed. Contrary to common thought, increasing this value is not a simple way to make the game play faster as there are a multitude of factors and variables which affect the overall game speed. This value is simply intended to keep things in flow and synchronized.

Stray=

Radius, in cells, that AI team members can stray from their position without causing a regroup action. This stops the AI teams from breaking up too much which would render their collective purpose useless.

RelaxedStray=

Gather actions by the AI will use this number (in cells) instead of Stray= allowing for bigger teams in AI triggers & team types.

CloakDelay=

Forced delay (in minutes) that cloaked units (ie submarines) will remain revealed (ie on the surface) before being allowed to cloak (submerge).

SuspendDelay=

Time, in minutes, that suspended AI teams will remain suspended.

SuspendPriority=

AI teams with less than this Priority= will suspend during base defense ops - in other words they abandon their current mission and defend the base unless that mission has a high Priority= (eg deploy MCV).

FlightLevel=

The default flight level, in leptons, above the ground that aircraft will fly.

ParachuteMaxFallRate=

This can be used to determine the speed, in cells per second, at which units with a parachute fall to the ground.

NoParachuteMaxFallRate=

This can be used to determine the speed, in cells per second, at which units without a parachute fall to the ground. This seems to be used for objects like planes which crash from the sky.

GuardModeStray=

The number of cells away an AI controlled unit can get from the unit it is guarding before it is told to move.

MissileSpeedVar=

The speed fluctuation percentage that guided missiles have (ie projectiles that have a ROT= greater than 0).

MissileROTVar=

The percentage rate of turn fluctuation that guided missiles have.

MissileSafetyAltitude=

The height, in leptons, above ground level that a missile fired at an air target that dies will fly to before detonating.

TeamDelays=

Intervals, in frames, between the AI checking for and creating teams. Listed by difficulty level Brutal, Medium, Easy.

AIHateDelays=

The delays, in frames, before the AI chooses an enemy. Listed by difficulty level Easy, Medium, Brutal.

AIAlternateProductionCreditCutoff=

When the AI has less credits than this it will begin to spend money more conservatively.

AIUseTurbineUpgradeProbability=

Percentage chance that the AI will upgrade it's power plants rather than build a new one. Although parsed and valid in Red Alert 2, this is unused and should be set to 0.00 as power plants cannot be upgraded with 'plug-ins' like they could in Tiberian Sun. This does open up the possibility of this logic being enabled, however.

NodAIBuildsWalls=

Can be set to 'yes' or 'no' and determines whether or not the AI will build walls when it is a Soviet army. Appears to have no effect as structures can now have the ProtectWithWall= tag which makes the AI more effective at wall deployment. In either case, the AI has never geen any good at building walls and the 'new' wall logic that was implemented in Tiberian Sun (where you could string wall sections together as determined by their GuardRange=) simply causes more problems and the AI eventually makes it's own base practically impassable - this in turn causes the game to slow to a crawl as the AI tries to move it's units.

AIBuildsWalls=

Can be set to 'yes' or 'no' and determines whether or not the AI will build walls when it is an Allied army. Appears to have no effect as structures can now have the ProtectWithWall= tag which makes the AI more effective at wall deployment. In either case, the AI has never geen any good at building walls and the 'new' wall logic that was implemented in Tiberian Sun (where you could string wall sections together as determined by their GuardRange=) simply causes more problems and the AI eventually makes it's own base practically impassable - this in turn causes the game to slow to a crawl as the AI tries to

MultiplayerAICM=

These are the coefficients applied to the amount of money the AI generates in multiplayer games. Listed by difficulty level, Brutal, Medium, Easy.

AIVirtualPurifiers=

These are the multipliers to the AI's harvested money bonus for multiplayer games only. They default to hardcoded values for the single player campaign. Listed by difficulty level, Brutal, Medium, Easy.

HealScanRadius=

Distance, in cells, that medics and repair vehicles should scan for 'targets' to heal. This is used to override the Range= of these units weapons as they need to have short ranges to work properly.

FillEarliestTeamProbability=

The probability that the AI will fill it's earliest team types by building the required members. Listed by difficulty level, Brutal, Medium, Easy.

MinimumAIDefensiveTeams=

The minimum number of teams the AI will create to assign to defensive missions. Listed by difficulty level, Brutal, Medium, Easy.

MaximumAIDefensiveTeams=

The maximum number of teams the AI will create to assign to defensive missions. Listed by difficulty level, Brutal, Medium, Easy.

TotalAITeamCap=

The total number of team types the AI will aspire to have at any one time to assign to specific missions. These are in addition to general unit creation which may be used for any action. Listed by difficulty level, Brutal, Medium, Easy.

UseMinDefenseRule=

Can be set to 'yes' or 'no' and determines if the AI will attempt to apply the 'minimum defense rule', in other words it will pool it's resources into base defense missions rather than attacks if this is set to 'yes'.

DissolveUnfilledTeamDelay=

The time, in frames, that the AI will wait before dissolving an AI trigger team that has no members. This causes the AI to select and assemble a new team so it wont keep trying the same thing over and over. Applies only to multiplayer games.

LargeVisceroid=

Determines the unit type that becomes available for Allied armies to build when an Allied Spy infiltrates a Soviet Battle Lab. This seems only to work on a sporadic basis and may be the result of some partly unfinished code which was originally intended to provide armies with vehicles instead of infantry when they infiltrated an enemy Battle Lab. Despite the comment being residual from Tiberian Sun, it in no way reflects the existence or appearance of Visceroids in Red Alert 2. Must be a unit type from the [VehicleTypes] list and be defined in the same was as all other units in RULES.INI.

SmallVisceroid=

Determines the unit type that becomes available for Soviet armies to build when an Spy infiltrates an Allied Battle Lab. This seems only to work on a sporadic basis and may be the result of some partly unfinished code which was originally intended to provide armies with vehicles instead of infantry when they infiltrated an enemy Battle Lab. Despite the comment being residual from Tiberian Sun, it in no way reflects the existence or appearance of Visceroids in Red Alert 2. Must be a unit type from the [VehicleTypes] list and be defined in the same was as all other units in RULES.INI.

AIIonCannonConYardValue=

AIIonCannonWarFactoryValue=

AIIonCannonPowerValue=

AIIonCannonEngineerValue=

AIIonCannonThiefValue=

AIIonCannonHarvesterValue=

AIIonCannonMCVValue=

AIIonCannonAPCValue=

AIIonCannonBaseDefenseValue=

AIIonCannonPlugValue=

AIIonCannonHelipadValue=

AIIonCannonTempleValue=

Note that there is no Ion Cannon in Red Alert 2 - these values are now used by the AI when it has a super weapon available and determine the probability for each target. Although the Weather Storm and Nuke have a wide area of effect, the target is used for the center point of the attack, ie where exactly the weapon is fired, and can be used to make it specifically ensure that a particular structure is destroyed. Note that the success of this logic relies upon the AI being aware of the target itself and whether it not it actually exists - this is achieved by using specific tags for those objects, for example IsPlug=yes would tell the AI that this structure is a 'plug' structure and thus AIIonCannonPlugValue= would be used to evaluate that structure as a potential target for the super weapon. The three values associated with these tags determine the percentage probability of the super weapon being fired at that target on the Easy, Normal and Brutal skill levels respectively. Actually acquiring the target is dealt with later.

Ion Storm Control

LightningDeferment=

Note that there are no Ion Storms in Red Alert 2 - again, this is residual from Tiberian Sun and these statements are now used for specific controls for the Weather Storm super weapon. This statement defines the number of frames between the creation of the Weather Storm being announced to all players and it's actual appearance, thus providing a small warning to it's intended victim. Its useful to have this warning, because the Weather Storm also makes the whole map darken so other players will be aware that this is about to happen.

LightningDamage=

The amount of damage done with each hit by a lightning bolt.

LightningStormDuration=

The default duration of the Weather Storm in frames, although this gets overridden by the trigger in map files (if present) which allows you to specify how long the storm will last. The higher this number, the longer the storm will last.

LightningWarhead=

The warhead used by the lightning strike itself, which must also be listed in the [Warheads] section and be defined in the same way all other warheads are.

LightningHitDelay=

How often, in frames, the direct target (as chosen above) gets hit. The lower this number, the more often it gets hit.

LightningScatterDelay=

The delay in frames between random lightning bolts. Decreasing this appears to inflict a serious hit on game speed and performance as the game has to perform many calculations for each shot - slowing this process down will thus slow the game down.

LightningCellSpread=

In the same way that weapons can affect cells around them, so does the lightning storm. This is a N x N square and determines how far away the damage from random bolts can go.

LightningSeparation=

The distance in cells between each weather cloud and lightning bolt.

LightningPrintText=

Can be set to 'yes' or 'no' and determines whether or not the text appears that tells players a Weather Storm has just been created. The game is hardcoded to display the text contained in the strings TXT_LIGHTNING_STORM and TXT_LIGHTNING_STORM_APPROACHING in the RA2.CSF file so even with this enabled you can still adjust the text that appears.

Prism Cannon Control

PrismType=

Tells the game code which structure the Prism Cannon is - must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

PrismSupportModifier=

Each Prism Cannon support beam adds this percentage to the damage that the firing beam inflicts.

PrismSupportMax=

The maximum number of support beams that may assist a Prism Cannon when firing.

PrismSupportDelay=

Firing a support beam makes a Prism Cannon go 'offline' for this long in frames, thus determines the delay between shots.

PrismSupportDuration=

A support beam is visible for this long in frames.

PrismSupportHeight=

A support beam is aimed this many leptons above the target building (ie the Prism Cannon it is supporting). Measured in leptons.

V3 Rocket Control

V3RocketPauseFrames=

Number of frames the V3 Rocket pauses on the launcher before tilting prior to launch.

V3RocketTiltFrames=

Number of frames it takes for the V3 Rocket to tilt into it's firing position.

V3RocketPitchInitial=

Starting pitch of the V3 Rocket before tilting up. Should be between 0.00 (horizontally flat) and 1.00 (vertically stood up).

V3RocketPitchFinal=

Ending pitch of the V3 Rocket after tilting up into firing position. Should be between 0.00 (horizontally flat) and 1.00 (vertically stood up).

V3RocketTurnRate=

Pitch manoeuvrability of the V3 Rocket when in the air. Same variable used by Aircraft.

V3RocketAcceleration=

This much is added to the V3 Rocket's acceleration every frame during the launch process.

V3RocketAltitude=

Cruising altitude above ground level (in leptons). At this height the V3 Rocket begins levelling off.

V3RocketDamage=

An exploding V3 Rocket does this much damage (at the center of the explosion).

V3RocketEliteDamage=

An exploding V3 Rocket (if the launcher is at Elite status) does this much damage (at the center of the explosion).

V3RocketBodyLength=

The body of the V3 Rocket is this long (in leptons), Used to calculate trajectory and travel path, best not to change unless you change the image of the V3 Rocket itself.

V3RocketLazyCurve=

The V3 Rocket's travel path follows a big, lazy curve. You know what this means when you see it in the game compared to the Dreadnaught Missile.

V3RocketType=

The object in the game which represents the V3 Rocket. This should be an aircraft type listed in the [AircraftTypes] section and have it's own entry defined as per all other aircraft. It is not known if you can specify more than one object here - if so, you could successfully spawn another missile which would act exactly like the V3 Rocket.

Dreadnaught Rocket Control

DMislPauseFrames=

Number of frames the Dreadnaught Missile pauses on the launcher before tilting prior to launch.

DMislTiltFrames=

Number of frames it takes for the Dreadnaught Missile to tilt into it's firing position.

DMislPitchInitial=

Starting pitch of the Dreadnaught Missile before tilting up. Should be between 0.00 (horizontally flat) and 1.00 (vertically stood up).

DMislPitchFinal=

Ending pitch of the Dreadnaught Missile after tilting up into firing position. Should be between 0.00 (horizontally flat) and 1.00 (vertically stood up).

DMislTurnRate=

Pitch manoeuvrability of the Dreadnaught Missile when in the air. Same variable used by Aircraft.

DMislAcceleration=

This much is added to the Dreadnaught Missile's acceleration every frame during the launch process.

DMislAltitude=

Cruising altitude above ground level (in leptons). At this height the Dreadnaught Missile begins levelling off.

DMislDamage=

An exploding Dreadnaught Missile does this much damage (at the center of the explosion).

DMislEliteDamage=

An exploding Dreadnaught Missile (if the launcher is at Elite status) does this much damage (at the center of the explosion).

DMislBodyLength=

The body of the Dreadnaught Missile is this long (in leptons), Used to calculate trajectory and travel path, best not to change unless you change the image of the Dreadnaught Missile itself.

DMislLazyCurve=

The Dreadnaught Missile's travel path does not follow a big, lazy curve. You know what this means when you see it in the game compared to the V3 Rocket.

DMislType=

The object in the game which represents the Dreadnaught Missile. This should be an aircraft type listed in the [AircraftTypes] section and have it's own entry defined as per all other aircraft. It is not known if you can specify more than one object here - if so, you could successfully spawn another missile which would act exactly like the Dreadnaught Missile.

Paratroop Drop Control

ParadropRadius=

Paratroopers will drop from the plane if it is this many leptons from the drop site (center of the cell) selected by the player.

Misc

CrewEscape=

Percentage chance that crew will escape from a destroyed vehicle.

CameraRange=

Distance, in cells, around a 'camera' weapon to reveal the map. If you give a weapon Camera=yes, this tells the game that the weapon inflicts no damage but instead reveals the map for this number of cells around the 'target'. This is a useful way to make a 'spy plane' type weapon. These tags are parsed and acknowledged in Red Alert 2 but remain residual from Red Alert - it is not known if they function properly.

FineDiffControl=

Another tag residual from Red Alert, again this is parsed and acknowledged. Can be set to 'yes' or 'no' and is supposed to allow 5 levels of difficulty instead of 3, but because the game is hardcoded and initialized for only 3, this has no apparent effect. There is a theory that this forces the game to use AI triggers from several different levels of difficulty instead of just the one it is set at, making the AI less predictable on the Brutal and Medium difficulty settings, but I have found it difficult to substantiate this. For example, if you set the difficulty to Brutal, the game uses the AI trigger types detailed in AI.INI for the Brutal skill level, but setting this flag to 'yes' means it should also pick AI trigger types from Medium and Easy too.

Pilot=

Another tag residual from Red Alert, this defines the [InfantryType] that parachutes from an aircraft when it is destroyed. Again, this is parsed and acknowledged but I have not seen this work - the Crashable=yes tag assigned to aircraft means the crew do not actually escape, although the probability of this working may be increased if CrewEscape= (see above) is set to 100%. It may even be hardcoded not to work unless some other special condition is set. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. Because there are two factions in Red Alert 2, it is safest to define this as a Technician (CTECH) otherwise a Soviet army could obtain an Allied infantry type or vice versa.

AlliedCrew=

This defines the [InfantryType] that emerges from a destroyed unit or building for Allied armies. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units.

SovietCrew=

This defines the [InfantryType] that emerges from a destroyed unit or building for Soviet armies.You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units.

Technician=

This defines the civilian [InfantryType] that emerges from a destroyed unit or building.You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. This is normally set as an armed civilian and is normally the Technician himself (CTECH).

Engineer=

This defines a special limited number [InfantryType] that emerges from a destroyed unit or building for any army. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. This is employed to generate Engineers but provides no means to distinguish between Allied and Soviet engineers. The game will not automatically generate Engineers belonging to the correct faction emerge from destroyed structures - any faction will get the [InfantryType] defined here, so be cautious as it provides a means for one faction to obtain a unit belonging to the other.

Paratrooper=

NOTE: this is a spelling mistake in RULES.INI, as it appears as PParatrooper= which is invalid. Paratrooper= is the correct one which gets parsed and is another tag residual from Red Alert. This defines the [InfantryType] that is dropped as a paratrooper. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. This may be completely overwritten by the Paradrop Special Rules (see below) but is still parsed by Red Alert 2.

Reinforcement/Chrono Stuff

ChronoDelay=

The delay, in frames, that units remain 'static' after being teleported by the Chronosphere.

ChronoReinfDelay=

The delay, in frames, that units remain 'static' after being teleported to the player through the 'reinforce by chronoshift' trigger within a map file (for example as seen in the final Allied mission in the single player campaign).

ChronoDistanceFactor=

This is used to calculate the delay of Chrono shifted units. The distance between it's current location and it's destination is measured in a straight line (in leptons), then divided by this to get the number of frames of delay. You can actually set a second arbitrary value for this if you dont want this equation to be used when the unit has moved a very small distance which can be quite useful a little more realistic (see ChronoRangeMinimum= below).

ChronoTrigger=

Can be set to 'yes' or 'no' and determines whether or not there is a distance-dependant delay that units remain 'static' after Chronoshifting. This applies to units moved by the Chronosphere and to units that can teleport themselves. If this is set to 'no' then all teleporting is instantaneous with a delay equal to ChronoMinimumDelay= (see below).

ChronoMinimumDelay=

The minimum delay, in frames, that units remain 'static' after being teleported regardless of the distance they travel. This value is also used if ChronoTrigger= is set to 'no'.

ChronoRangeMinimum=

This can be used to set a small range (in cells) within which the delay is constant. The range is measured in leptons, and within this small range the delay will be set to the value held in ChronoMinimumDelay=.

Paradrop Special Rules

AmerParaDropInf=

This defines the [InfantryType] that is dropped as a paratooper for the American side with their super weapon. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. You can actually force the planes to drop different types of infantry here with more than one plane, by listing them separated by commas - but you must ensure that there is an equal number set (see below) for each infantry unit or the game will generate an internal error.

AmerParaDropNum=

Specifies the number of each of the above infantry units to be dropped for the American side with their super weapon. You should ensure that there is a number listed here for each infantry type you have specified with AmerParaDropInf=.

AllyParaDropInf=

This defines the [InfantryType] that is dropped as a paratrooper for the Allies when they use the super weapon obtained when a Tech Airport is captured. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. You can actually force the planes to drop different types of infantry here with more than one plane, by listing them separated by commas - but you must ensure that there is an equal number set (see below) for each infantry unit or the game will generate an internal error.

AllyParaDropNum=

Specifies the number of each of the above infantry units to be dropped for an Allied side with the super weapon obtained when a Tech Airport is captured. You should ensure that there is a number listed here for each infantry type you have specified with AllyParaDropInf=.

SovParaDropInf=

This defines the [InfantryType] that is dropped as a paratooper for the Soviets when they use the super weapon obtained when a Tech Airport is captured. You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units. You can actually force the planes to drop different types of infantry here with more than one plane, by listing them separated by commas - but you must ensure that there is an equal number set (see below) for each infantry unit or the game will generate an internal error.

SovParaDropNum=

Specifies the number of each of the above infantry units to be dropped for a Soviet side with the super weapon obtained when a Tech Airport is captured. You should ensure that there is a number listed here for each infantry type you have specified with SovParaDropInf=.

Spy Stuff

AlliedDisguise=

This defines the default [InfantryType] that a spy will appear as to an Allied army if his MakeUpKit weapon has not been used (which will only be the case if the enemy has no infantry units on the map). You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units.

SovietDisguise=

This defines the default [InfantryType] that a spy will appear as to a Soviet army if his MakeUpKit weapon has not been used (which will only be the case if the enemy has no infantry units on the map). You should ensure this is set to a valid infantry unit, and ensure that infantry unit is listed in the [InfantryTypes] list and is defined as per all other infantry units.

SpyPowerBlackout=

Time, in frames, for which a spy will shut down the enemy power when he infiltrates any power plant.

SpyMoneyStealPercent=

The percentage of total credits possessed by an enemy player that a spy will steal when he infiltrates one of their Ore Refineries.

AttackCursorOnDisguise=

Can be set to 'yes' or 'no' and determines whether or not you automatically get an 'attack' cursor on a disguised spy or Mirage Tank, even if they have not been detected as being disguised.

DefaultMirageDisguises=

List of objects from which the Mirage Tank will select it's disguise. This is used even if you enable the [TankMakeUpKit] weapon but do not select a 'target' for the tank. This must be a valid object from the [TerrainTypes] list, although errors can be encountered if you put any TIBTRE in this list.

InfantryBlinkDisguiseTime=

The number of frames that any disguised unit is 'visible' to an enemy unit thus rendering it eligible to be an acquired target for that enemy unit. Must be bigger than 8 (approximately half a second) for this to be reliable, although it can be set to 0 to completely prevent enemy infantry from detecting them.

MaximumCheerRate=

How often, in frames, a team is allowed to cheer when commanded to from the keyboard hotkey (as defined in KEYBOARD.INI) or from the Advanced Command Bar (if defined in UI.INI).

New AI Type Snippets

AISafeDistance=

Distance, in cells, that the AI will consider gathering outside it's enemies base. This distance is measured from the center of the enemy base. It appears that the 'gather' action is a new script type specific to Red Alert 2.

AIMinorSuperReadyPercent=

When an Iron Curtain or Chronosphere is this charged, the AI will consider it in it's AI triggers. This is what makes the AI Iron Curtain it's tanks when they attack you, or Chronoshift it's units at you rather than send them across the map.

HarvesterTooFarDistance=

If a War Miner is further than this from the refinery it wants, it will move next to it instead of reserving it and refigure things out when it stops. This value should be small to approximate the wait/time concern versus driving to the next refinery. Overall, this speeds up the income of credits from harvested Ore and Gems.

ChronoHarvTooFarDistance=

As above but for Chrono Miners. Rather than have them teleport super far and then re-pick an Ore patch (or teleport super far and drive super far back), they will stay on their side of the map (for example when the player has more than one base or multiple refineries with long distances between them). Appears to cause problems when stretches of water separat the bases as the Chrono Miners have difficulty teleporting across stretches of water.

AlliedBaseDefenseCounts=

This is the explicit number of base defense structures that Brutal, Medium and Easy Allied AI players will plan on making. The structures picked are those with IsBaseDefense=yes set in their entry, although that tag should not be used to get the AI to build other structures as it is also used for AI targeting and threat evaluation purposes. It's tricky, but to predict how many the AI is likely to build, use this formula;-

((Total Base Value - 2000) / 1500 x GDIBaseDefenseCoefficient) + 3 x (Difficulty Level - 1)

SovietBaseDefenseCounts=

This is the explicit number of base defense structures that Brutal, Medium and Easy Soviet AI players will plan on making. The structures picked are those with IsBaseDefense=yes set in their entry, although that tag should not be used to get the AI to build other structures as it is also used for AI targeting and threat evaluation purposes. It's tricky, but to predict how many the AI is likely to build, use this formula;-

((Total Base Value - 2000) / 1500 x NodBaseDefenseCoefficient) + 3 x (Difficulty Level - 1)

AIPickWallDefensePercent=

Each time the AI picks to build a base defense, this is the percentage chance it will override picking a gun type with picking a wall (if there are any buildings left in it's base with ProtectWithWall=yes set which have not yet been surrounded by walls). Listed by difficulty level, Brutal, Medium, Easy.

AIRestrictReplaceTime=

After the AI takes damage to a building, this is the number of frames to restrict the replacement of lost buildings to only walls, power and base defenses.

ThreatPerOccupant=

The increase to an occupied structures' ThreatPosed= value per occupant.

ApproachTargetResetMultiplier=

The approach target position should be recalculated if the target is further away than the weapon range times this. ApproachTarget is an AI script action which picks a target within it's weapons Range= and if it gets further away than that range times this value the AI knows the target is moving and that it will need to re-figure where it is. This can be overridden in the units' entry with the CanApproachTarget= statement.

CampaignMoneyDeltaEasy=

This value is added to the Easy difficulty level credits amount for all houses which have PlayerControl=yes assigned. This is added at the time the houses are read - it is the only thing that is known at that time so it can't be the player's house only. Change this value to adjust the amount of money someone starts with on a map.

CampaignMoneyDeltaHard=

This value is added to the Brutal difficulty level credits amount for all houses which have PlayerControl=yes assigned. This is added at the time the houses are read - it is the only thing that is known at that time so it can't be the player's house only. Change this value to adjust the amount of money someone starts with on a map.

GuardAreaTargetingDelay=

Used to provide explicit control of targeting rates in frames, when engaged in guard mode.

NormalTargetingDelay=

Used to provide explicit control of targeting rates in frames, when not engaged in a mission or AI trigger.

AINavalYardAdjacency=

Distance, in cells, that the AI can place it's Naval Yard from it's Construction Yard.

DisabledDisguiseDetectionPercent=

The percentage chance that an individual unit will detect a Mirage Tank which is fake-blinking (after firing). This is per unit, so even a lowish number is near enough automatic when then the AI has several units nearby. In other words, the more units that are near a disguised Mirage Tank which fires, the more likely it is to be discovered. Listed by difficulty level, Brutal, Medium, Easy.

AIAutoDeployFrameDelay=

The number of frames that the AI will wait to deploy it's GI's that are in guard mode so that they don't bounce up and down. Listed by difficulty level, Brutal, Medium, Easy.

MaximumBuildingPlacementFailures=

If the AI gets hung up on thinking it can place something but being unable to clear the space (too jammed with units for example) then it abandons that action after this many failures. The AI will wait for the number of frames specified in PlacementDelay= before trying again so that you can tell how long it will try for it.

PurifierBonus=

Percentage added to the value of harvested Ore by Ore Purifiers (any structure with OrePurifer=yes set).

Drop Pod Flight Characteristics

DropPodWeapon=

Note that Drop Pods do not work by default in Red Alert 2, although all of the associated keywords are read and acknowledged. This may mean that it is possible to generate Drop Pod Reinforcements by using DropPod=yes with the associated reinforcement trigger and TeamType through the AI.INI file or a map file, although I have not tested this. This tag defines the weapon mounted on a Drop Pod which is fired as it descends.

DropPodHeight=

The height above ground level, in leptons, that Drop Pods appear at.

DropPodSpeed=

The speed of the Drop Pods descent.

DropPodAngle=

The angle of descent for Drop Pods. Measured in radians as the CLSID locomotor for Drop Pods makes them drop in a diagonal line (0.40 is flat, 1.18 is very steep).

Hover Vehicle Characteristics

HoverHeight=

The height above ground level, in leptons, that vehicles hover. Used by the CLSID locomotor for hover vehicles and affects them all.

HoverDampen=

The percentage dampening affect on hover vehicle 'bounciness'. Used by the CLSID locomotor for hover vehicles and affects them all.

HoverBob=

The time, in minutes, between hover 'bobs'.

HoverBoost=

The percentage adjustment to the units normal Speed= when travelling straight.

HoverAcceleration=

The time, in minutes, to accelerate to full speed.

HoverBrake=

The time, in minutes, to decelerate to a full stop.

Balloon Hover Alternate Characteristics

BalloonHoverHeight=

Height above ground level, in leptons, that units with BalloonHover=yes will hover.

BalloonHoverDampen=

The percentage dampening affect on balloon hover vehicle 'bounciness'.

BalloonHoverBob=

The time, in minutes, between balloon hover 'bobs'.

BalloonHoverBoost=

The percentage adjustment to the units normal Speed= when travelling straight.

BalloonHoverAcceleration=

The time, in minutes, to accelerate to full speed.

BalloonHoverBrake=

The time, in minutes, to decelerate to a full stop.

Subterranean Vehicle Characteristics

TunnelSpeed=

Although no subterranean units appear in Red Alert 2 they can be enabled and used perfectly as they do in Tiberian Sun. This value is used by the subterranean locomotor CLSID to determine how fast those units move when underground.

Production & Power Effects

MultipleFactory=

This now works differently than it did in previous C&C games and is now a straight discount cumulative multiplier. This determines the bonus (reduction) in build time for units or infantry produced from their respective FactoryType=. For example, when set to 0.8 you get a build speed bonus of 1.0 for having one factory, 0.8 for having two, 0.64 for having three, 0.512 for having four etc.

MinLowPowerProductionSpeed=

Minimum production speed as a result of the player having low power. This applies after LowPowerPenaltyModifier= is applied (see below).

MaxLowPowerProductionSpeed=

Maximum speed you can build things at when you have low power. This is new in Red Alert 2 and was implemented because most of the time you will be short of 10 or 20 power units (so 99% power is treated as this percentage).

LowPowerPenaltyModifier=

This determines if you get a 'double penalty' or 'half penalty' to production speed as a result of low power. This is multiplied by the number of power units you are short of to get the actual penalty to build speed. This defaults to a value of 1, so 2 would mean a 30% shortage of power thus a 60% penalty, and 0.5 would mean a 15% penalty.

Hack Section

GDIGateOne=

For Allied AI base building and targeting purposes this defines the structure to be used as a NW - SE gate within a wall. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are. It is unknown if the AI uses this in Red Alert 2, although the gate logic itself does work.

GDIGateTwo=

For Allied AI base building and targeting purposes this defines the structure to be used as a NE - SW gate within a wall. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are. It is unknown if the AI uses this in Red Alert 2, although the gate logic itself does work.

WallTower=

For Allied AI base building and targeting purposes this defines the structure to be used as a defensive structure which forms part of a wall and hence can be built within one. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

Shipyard=

For AI base building and targeting purposes this lists the structures to be used as a Naval Yard. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

NodGateOne=

For Soviet AI base building and targeting purposes this defines the structure to be used as a NW - SE gate within a wall. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are. It is unknown if the AI uses this in Red Alert 2, although the gate logic itself does work.

NodGateTwo=

For Soviet AI base building and targeting purposes this defines the structure to be used as a NE - SW gate within a wall. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are. It is unknown if the AI uses this in Red Alert 2, although the gate logic itself does work.

NodRegularPower=

For Soviet AI base building and targeting purposes this defines the structure to be used as a power supply source. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

NodAdvancedPower=

For Soviet AI base building and targeting purposes this defines the structure to be used as a source of greater power supply. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

GDIPowerPlant=

For Allied AI base building and targeting purposes this defines the structure to be used as a power supply source. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are.

GDIPowerTurbine=

For Allied AI base building and targeting purposes this defines the structure to be used as a source of greater power supply. Must be a valid structure name from the [BuildingTypes]list and be defined as all structures are. Is also looked for dependant upon the value of AIUseTurbineUpgradeProbability=.

GDIHunterSeeker=

Defines which unit to use as the Allied Hunter Seeker. The Hunter Seeker logic appears to be disabled in Red Alert 2 (it certainly isn't usable as a Super Weapon) although all of it's associated keywords are parsed. It is not known how this keyword may be used. Must be a valid unit name from the [VehicleTypes]list and be defined as all units are.

NodHunterSeeker=

Defines which unit to use as the Soviet Hunter Seeker. The Hunter Seeker logic appears to be disabled in Red Alert 2 (it certainly isn't usable as a Super Weapon) although all of it's associated keywords are parsed. It is not known how this keyword may be used. Must be a valid unit name from the [VehicleTypes]list and be defined as all units are.

GDIFirestormGenerator=

This is residual fom Tiberian Sun and can be used to determine one structure which has a special animation sequence to display when it is badly damaged and again when being repaired (for example the structure 'shuts down' when badly damaged and functions again when being repaired). Must be a valid structure from the [BuildingTypes]list and be defined as all structures are. The animation to be displayed in this special case is defined by the FirestormActiveAnim= statement.

RepairBay=

For AI purposes this lists the structures to send units to when they are in need of repair. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

BaseUnit=

This lists the units to consider 'home' (Allied, Soviet) when no structures are present and thus the point jumped to on the map when a player hits the 'home' key as defined in KEYBOARD.INI. This is also used when the game determines which unit you will always get when the game starts (ie your MCV) and changing this is one way to get players to start without an MCV thus disabling base building (note that whatever unit you place here, it's loss still counts as an MCV so losing it will constitute a 'game over' trigger). Must be valid unit names from the [VehicleTypes]list and be defined as all units are.

HarvesterUnit=

This lists the preferred units to build for harvesting purposes. Must be valid unit names from the [VehicleTypes]list and be defined as all units are.

PadAircraft=

This lists the aircraft which have AirportBound=yes set in their entry. Must be valid unit names from the [AircraftTypes]list and be defined as all aircraft are.

Bret's Hack Section

TreeStrength=

Because trees are terrain objects instead of buildings, their strength is determined here, and this is used when determining how much damage it takes to destroy a tree. Although the 'forest fires' logic (see below) does not work exactly as it did in Tiberian Sun, trees can still be destroyed by flame type weapons or indeed any weapon whose warhead has Fire=yes set.

WindDirection=

Used to set the direction of the game's simulated wind system. The wind in the game does not appear to have as much of an effect in the game as it did in Tiberian Sun where it could affect aircraft, missiles, jumpjets and gas type particle systems. The wind direction can be set with values between 0 and 7, with 0 representing North and increasing numbers rotating clockwise as per a compass.

TrackedUphill=

Coefficient applied to speed of tracked vehicles when moving uphill. Used by the CLSID locomotor for units with SpeedType=Track.

TrackedDownhill=

Coefficient applied to speed of tracked vehicles when moving downhill. Used by the CLSID locomotor for units with SpeedType=Track.

WheeledUphill=

Coefficient applied to speed of wheeled vehicles when moving uphill. Used by the CLSID locomotor for units with SpeedType=Wheel.

WheeledDownhill=

Coefficient applied to speed of wheeled vehicles when moving downhill. Used by the CLSID locomotor for units with SpeedType=Wheel.

LeptonsPerSightIncrease=

Height above ground level, in leptons, that a unit has to go before it gets a bonus to it's sight range.

LeptonsPerFireIncrease=

Height above ground level, in leptons, that a unit has to go before it gets a bonus to it's firing range.

AttackingAircraftSightRange=

Sight range, in cells, that an aircraft is considered to have when in an attack mission.

BlendedFog=

This determines whether the 'fog' is blended ('yes') or dithered ('no'). These are two methods used by DirectX fog-table emulation to produce specific graphical effects. As far as I can tell, this is unused in Red Alert 2 as the 'Fog Of War' appears to have been disabled although FOG.SHP (the alpha-image used to create the fog) is still in the game files and referred to by the game code.

CliffBackImpassability=

Determines how 'impassable' the terrain is behind cliffs, 0 being minimal and 2 being maximal, in other words how many cells away from the edge of a cliff a structure can be placed or a unit can move to.

IceCrackingWeight=

Objects with Weight= set higher than this value will cause Ice to crack when they move on it. It is not known if this logic still works in Red Alert 2 (although these keywords are parsed) as the Isometric Tile Types for the ice itself are not in the game files as they were in Tiberian Sun.

IceBreakingWeight=

Objects with Weight= set higher than this value will actually break through the ice and sink. It is not known if this logic still works in Red Alert 2 (although these keywords are parsed) as the Isometric Tile Types for the ice itself are not in the game files as they were in Tiberian Sun.

ShipSinkingWeight=

Objects with Naval=yes (ie ships) and Weight= set higher than this value will sink when destroyed instead of exploding.

CloakingStages=

The number of alpha stages (visual effect) to apply to an object that can cloak. Note that the 'cloaking' logic actually refers to the emerging and submerging logic for submarine and underwater units objects in Red Alert 2.

TiberiumTransmogrify=

The percentage chance that an [InfantryType] which does not have TiberiumProof=yes set will 'transmogrify' into the unit type defined by the SmallVisceroid= statement when they die through contact with Ore. Although parsed, this does not appear to get used in Red Alert 2 as the logic which causes Ore to inflict damage on infantry appears to have been disabled.

TreeFlammability=

Determines how 'flammable' trees are, the higher this value the harder it is to get them to set on fire or burn. Should be between 0.00 and 1.00. Does not appear to be used as this element of the 'forest fires' logic appears to have been disabled in Red Alert 2.

CraterLevel=

Determines how big the crater [SmudgeTypes] listed in the Craters= statement are when they first appear. Should be set between 0 (no cratering) and 4 (largest craters).

BridgeVoxelMax=

Determines the maximum number of ExplosiveVoxelDebris= types that are spawned from each section of bridge that is destroyed.

WallBuildSpeedCoefficient=

Coefficient applied to the build speed of walls in relation to other structures, which is used to make walls build quicker or slower in relation to the side's normal build speed for structures.

AllowShroudedSubteranneanMoves=

Can be set to 'true' or 'false' and determines if subterranean units can be selected and their health bars seen by players when they are under the shroud.

ConditionRedSparkingProbability=

Defines the percentage chance that an object will spawn the particle system defined with DefaultSparkSystem= (see Particle System Defaults) when it's health bar is red.

ConditionYellowSparkingProbability=

Defines the percentage chance that an object will spawn the particle system defined with DefaultSparkSystem= (see Particle System Defaults) when it's health bar is yellow.

RevealByHeight=

Determines the number of adjacent cells which are revealed by the unit as a result of it being higher up on the ground (eg on the edge of a cliff and looking down).

ZoomInFactor=

This is utilized by the DirectDraw routine which allows the game to zoom in on a waypoint through the relevant action through a map file and determines the factor of that zoom as a multiple of the current rate of the zoom.

AircraftFogReveal=

Determines the number of adjacent cells which are revealed by aircraft as a result of them being above ground (ie in flight and looking down).

MaximumQueuedObjects=

Determines the maximum number of objects which can be queued for construction when the player successively left-clicks on their icon(s) in the sidebar.

MaxWaypointPathLength=

Determines the maximum length, in cells, of any waypoint action/command.

EngineerCaptureLevel=

Determines the number of Engineers required to infiltrate a structure before it's ownership is transferred to the 'capturing' side. Appears to be hardcoded to remain at 1.0, since the 'multi engineer' logic appears to have been disabled in Red Alert 2 to allow simple capture of Tech Buildings. This value is meant to be used if MultiEngineer= is set to 'yes' in the [MultiplayerDialogSettings] section.

TalkBubbleTime=

The time, in minutes, that a 'speech' bubble appears above a unit when triggered by the relevant action through a map file. This is residual from Firestorm where units could have 'expressions' or 'emotive icons' appear above them when they spoke. In order to make this work, TALKBUBL.SHP must be copied from Firestorm and inserted into your mod's ECACHE.MIX file. That SHP works with the Red Alert 2 unit palettes, so conversion is not necessary.

Firestorm Defense Controls

ChargeToDrainRatio=

Although the 'charge drain' logic is not used in Red Alert 2, it can still be enabled for any appropriate super weapon. This keyword determines the ratio of time taken (in minutes) for a discharged super weapon to recharge, and is expressed as a proportion of that super weapons ChargeTime=.

DamageToFirestormDamageCoefficient=

Coefficient applied to the warhead defined in the FirestormWarhead= which determines the net damage that warhead does to any incoming projectile.

Veinhole Monster Parameters

VeinholeMonsterStrength=

It is not known if the Veinhole monster logic works in Red Alert 2 as it did in Tiberian Sun. It may work and/or be employed in a different way, as many units in Red Alert 2 have ImmuneToVeins=yes set. It could be that the veinhole and veins logic was originally to be used for the radiation effect. Because they are [TerrainTypes] rather than [BuildingTypes], this statement defines the strength of Veinhole Monsters in order that they may be destroyed. This was not used in Tiberian Sun as the [VEINTREE] entry defined the strength of the Veinhole Monsters.

VeinholeGrowthRate=

Delay in seconds between each growth of veins.

VeinholeShrinkRate=

Delay in seconds between each shrinkage of veins after the Veinhole Monster had been destroyed.

MaxVeinholeGrowth=

Maximum number of cells on the map which veins can occupy, this was used by the vein growth logic to get the veins to continue growing until they occupied this number of cells.

VeinDamage=

Amount of damage inflicted by the veins when a unit which did not have ImmuneToVeins=yes set moved across them. The warhead defined by the VeinholeWarhead= statement was used to apply that damage.

VeinholeTypeClass=

Details the terrain type that defines the Veinhole Monster. This must be a valid object from the [TerrainTypes] list.

AI Trigger Weighting Parameters

AITriggerSuccessWeightDelta=

Delta applied to an AI trigger which was successfully executed by the AI, thus increasing the chance of the same trigger being used again instead of choosing a different one.

AITriggerFailureWeightDelta=

Delta applied to an AI trigger which was not successfully executed by the AI, thus increasing the chance of a different trigger being used again instead of choosing the same one.

AITriggerTrackRecordCoefficient=

Coefficient used to determine how many previous AI triggers to keep a record of when evaluating the chance of using the same or a different AI trigger for an attack mission. Used when building a 'cache' of previous triggers.

Some Spotlight Controls

SpotlightSpeed=

The jury is still out on whether or not the spotlights from Tiberian Sun can be made to work in Red Alert 2, although these keywords are parsed and acknowledged by Red Alert 2. Adding HasSpotlight=yes to an object appears to cause an internal error. This keyword defines the speed in radians at which the spotlight moves.

SpotlightMovementRadius=

Defines the offset, in leptons, of the center of the arc sweep from the origin of the spotlight.

SpotlightLocationRadius=

The spotlights' offset from it's structure, in leptons.

SpotlightAcceleration=

The acceleration of the spotlights' movement, in radians.

SpotlightAngle=

The maximum suggested angle of arc sweep of the spotlight if it moves from left to right as opposed to going in a circle.

SpotlightRadius=

The radius of the spotlight itself (as seen on the ground), in leptons.

Controls For Radar Events

RadarEventSuppressionDistances=

The suppression distances in cells of the radar events (the rotating and flashing squares you get on the radar screen). Note that each of the statements in this section has 6 values attached. You must stay with this convention or suffer internal errors. Each value refers to a different radar event, and those events, in order, are;-

(1) Generic Combat Event

(2) Generic Noncombat Event

(3) Dropzone Event

(4) Base Under Attack Event

(5) Harvester Under Attack Event

(6) Enemy Object Sensed Event

RadarEventVisibilityDurations=

Time, in frames, that the radar event should be visible on the players radar.

RadarEventDurations=

Time, in frames, that the radar event should last.

FlashFrameTime=

Time, in frames, that the radar event's square on the radar screen should flash between colors. This should always be an odd number.

RadarCombatFlashTime=

This should always be an odd multiple of FlashFrameTime= , ie RadarCombatFlashTime/FlashFrameTime should always equal an odd number.

RadarEventMinRadius=

Minimum radius required by event to generate the event on the radar.

RadarEventSpeed=

Speed at which the radar event runs on the players radar screen.

RadarEventRotationSpeed=

Speed at which the radar event rotates on the players radar screen.

RadarEventColorSpeed=

Rate at which the colors of the radar event change.

RevealTriggerRadius=

The range, in cells, of a 'reveal around waypoint trigger' as used in map files. 10 is the maximum.

ID Holders For Particle Systems And Voxel Debris

ExplosiveVoxelDebris=

The list of voxel animations that appear as debris from explosions. It is not known is there is a maximum number of animation types that can be listed here, although you should ensure that there is at least one. Each animation listed here must be a voxel animation, and be listed in the [VoxelAnims] section as well as being defined as all other voxel animations in RULES.INI and ART.INI.

TireVoxelDebris=

The voxel animation that appears as a tire from vehicles. The animation listed here must be a voxel animation, and be listed in the [VoxelAnims] section as well as being defined as all other voxel animations in RULES.INI and ART.INI.

ScrapVoxelDebris=

The voxel animation that appears as scrap metal from vehicles. The animation listed here must be a voxel animation, and be listed in the [VoxelAnims] section as well as being defined as all other voxel animations in RULES.INI and ART.INI.

Building Prerequisite Categories Are Specified Here

PrerequisitePower=

This lists the structures which constitute power plants. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

PrerequisiteFactory=

This lists the structures which constitute War Factories. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

PrerequisiteBarracks=

This lists the structures which constitute Barracks. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

PrerequisiteRadar=

This lists the structures which constitute Radar. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

PrerequisiteTech=

This lists the structures which constitute Battle Labs. Must be valid structure names from the [BuildingTypes]list and be defined as all structures are.

Hunter Seeker Controls

HunterSeekerDetonateProximity=

The distance, in leptons, that a unit with HunterSeeker=yes set (which must also be defined with the GDIHunterSeeker= or NodHunterSeeker= statements) will detonate. This removes the need for the Hunter Seeker's weapon to have the Suicide=yes property. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

HunterSeekerDescendProximity=

The distance, in leptons, that a unit with HunterSeeker=yes set (which must also be defined with the GDIHunterSeeker= or NodHunterSeeker= statements) must be from it's target before it starts to descend. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

HunterSeekerAscentSpeed=

The speed that a unit with HunterSeeker=yes set (which must also be defined with the GDIHunterSeeker= or NodHunterSeeker= statements) will ascend to it's FlightLevel=. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

HunterSeekerDescentSpeed=

The speed that a unit with HunterSeeker=yes set (which must also be defined with the GDIHunterSeeker= or NodHunterSeeker= statements) will descend towards it's target. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

HunterSeekerEmergeSpeed=

The speed that a unit with HunterSeeker=yes set (which must also be defined with the GDIHunterSeeker= or NodHunterSeeker= statements) will ascend from the structure from which it is created as defined with the HSBuilding= statement in the [SpecialWeapons] section. Note that although a unit assigned as HunterSeeker=yes can have the AlternateSpeed= and AlternateFlightLevel= tags, those are only used if unit is constructed rather than spawned thus are used only when it exits the factory from which it is built. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

Default Threat Evaluation Controls

MyEffectivenessCoefficientDefault=

Coefficient applied to an objects threat rating when considering engaging a target with a lower ThreatPosed= value than it's own. This is designed to ensure that tough units actively seek to destroy weaker units (eg tanks vs soldiers). Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

TargetEffectivenessCoefficientDefault=

Coefficient applied to an objects threat rating when considering engaging a target with a higher ThreatPosed= value than it's own. This is intended to prevent weaker units engaging enemy units (eg a soldier vs a tank) in a suicidal fashion. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

TargetSpecialThreatCoefficientDefault=

Coefficient applied to an object which has SpecialThreatRating=1 set when considering engaging an eligible target. This is used to make 'super powerful' objects attempt to destroy their targets without considering the consequences either to itself or others. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

TargetStrengthCoefficientDefault=

Coefficient applied to an objects threat rating when considering engaging a target which has a higher strength than itself. This is designed to get a unit to consider whether or not to attack something with higher strength, as the process of doing so may involve the unit itself being destroyed (ie a suicidal attack) when the target returns fire. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

TargetDistanceCoefficientDefault=

Coefficient applied to an objects threat rating when considering engaging a target which is out of range of any of it's weapons. This has the effect of the object engaging in pursuit of it's intended target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

Defaults For Dumb Threat Evaluation

DumbMyEffectivenessCoefficient=

Coefficient applied to an objects threat rating when considering engaging a target with a lower ThreatPosed= value than it's own. Used for threat evaluation and target acquisition, not for actually engaging that target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0). Used for objects that have HasStupidGuardMode=yes set.

DumbTargetEffectivenessCoefficient=

Coefficient applied to an objects threat rating when considering engaging a target with a higher ThreatPosed= value than it's own. Used for threat evaluation and target acquisition, not for actually engaging that target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0). Used for objects that have HasStupidGuardMode=yes set.

DumbTargetSpecialThreatCoefficient=

Coefficient applied to an object which has SpecialThreatRating=1 set when considering engaging an eligible target. Used for threat evaluation and target acquisition, not for actually engaging that target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0). Used for objects that have HasStupidGuardMode=yes set.

DumbTargetStrengthCoefficient=

Coefficient applied to an objects threat rating when considering engaging a target which has a higher strength than itself. Used for threat evaluation and target acquisition, not for actually engaging that target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0). Used for objects that have HasStupidGuardMode=yes set.

DumbTargetDistanceCoefficient=

Coefficient applied to an objects threat rating when considering engaging a target which is out of range of any of it's weapons. Used for threat evaluation and target acquisition, not for actually engaging that target. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0). Used for objects that have HasStupidGuardMode=yes set.

EnemyHouseThreatBonus=

Coefficient applied to an objects threat rating when it is considering which object to engage. This is designed to ensure that enemy objects pose a higher threat than a friendly or allied object. The special case for units with Cyborg=yes set overrides this setting so it gets ignored when they are badly damaged and you have Berzerk=yes set, meaning that the damaged cyborg will consider friendly and allied units equally to enemy units when considering what to attack. Although a percentage value is put in here, you get more effectiveness when you put a true coefficient in (eg convert 200 to 2.0).

[JumpjetControls]

TurnRate=

The rate of turn for units which have JumpJet=yes assigned although this can be overridden in the unit's entry with the JumpjetTurnRate= statement. Used by the locomotor CLSID.

Speed=

The speed of units which have JumpJet=yes assigned although this can be overridden in the unit's entry with the JumpjetSpeed= statement. Used by the locomotor CLSID.

Climb=

The climb speed of units which have JumpJet=yes assigned although this can be overridden in the unit's entry with the JumpjetClimb= statement. Used by the locomotor CLSID.

CruiseHeight=

The height, in leptons, above ground level that units which have JumpJet=yes assigned will fly although this can be overridden in the unit's entry with the JumpjetHeight= statement. Used by the locomotor CLSID. This should be at least 500 leptons so it goes over high bridges.

Acceleration=

The acceleration of units which have JumpJet=yes assigned although this can be overridden in the unit's entry with the JumpjetAccel= statement. Used by the locomotor CLSID.

WobblesPerSecond=

The number of time per second that units which have JumpJet=yes assigned will wobble although this can be overridden in the unit's entry with the JumpjetWobbles= statement and even disabled completely with the JumpjetNoWobbles= statement. Used by the locomotor CLSID.

WobbleDeviation=

The deviation in trajectory, in leptons, of units which have JumpJet=yes assigned although this can be overridden in the unit's entry with the JumpjetDeviation= statement. Used by the locomotor CLSID.

[SpecialWeapons]

HSBuilding=

List of structures that the unit assigned as HunterSeeker=yes will emerge from. GDIHunterSeeker= will emerge from the first structure in the list, and NodHunterSeeker= will emerge from the second structure in the list. The structures should be from the list of [BuildingTypes] and be defined as per all other structures. It has not been established if this portion of the Hunter Seeker logic works in Red Alert 2.

NukeWarhead=

Specifies the warhead used by a falling nuclear missile and must be specified in the [Warheads] section and be defined as per all other warheads.

NukeDown=

This is residual from Red Alert and is parsed in Red Alert 2 but appears not to be used. It specifies the projectile used by the nuclear missile as it descends, and the default value of 'NukeDown' is not a valid projectile.

NukeProjectile=

This is residual from Red Alert and is parsed in Red Alert 2 but appears not to be used. It specifies the projectile used by the nuclear missile as it ascends, and the default value of 'NukeUp' is not a valid projectile.

EMPulseWarhead=

This is residual from Tiberian Sun and is parsed in Red Alert 2 but appears not to be used. It specifies the warhead used by the EMP Cannon's weapon (a structure with EMPulseCannon=yes, Primary=EMPulseWeapon and SuperWeapon=EMPulseSpecial) and must be specified in the [Warheads] section and be defined as per all other warheads. Unfortunately, the EMP logic is disabled in Red Alert 2.

EMPulseProjectile=

This is residual from Tiberian Sun and is parsed in Red Alert 2 but appears not to be used. It specifies the projectile used by the EMP Cannon's weapon (a structure with EMPulseCannon=yes, Primary=EMPulseWeapon and SuperWeapon=EMPulseSpecial). Unfortunately, the EMP logic is disabled in Red Alert 2.

[AudioVisual]

DetailMinFrameRateNormal=

Specifies the frame rate value below which various visual effects are switched off to improve game speed and performance.

DetailMinFrameRateMovie=

Specifies the frame rate value below which various visual effects are switched off to improve game speed and performance whilst a movie is playing (eg in the radar screen).

DetailBufferZoneWidth=

To restore effects disabled by the above two statements, the frame rate must equal or exceed DetailMinFrameRateNormal= plus this value.

LineTrailColorOverride=

Defines the color of missile line trails in 24-bit R,G,B format. Used in the single player campaign games only, it is best to leave this at the default of 0,0,0 as each missile defines it's own color.

ChronoBeamColor=

Specifies the color of the Chrono Legionnaire's Neutron Rifle beam, in 24-bit R,G,B.

DamageFireTypes=

Lists the animations to display when fires spring up on damaged buildings. Must be valid entries from the [Animations] list and be defined in ART.INI.

OreTwinkleChance=

When the map is initialized, there is this chance that a cell containing Ore will also get the OreTwinkle= animation. The chance of this is 1 in this number (so if set to 30 there would be a 1 in 30 chance of any cell containing Ore to also get this animation).

OreTwinkle=

Specifies the animation to display when Ore 'twinkles'. Must be a valid entry from the [Animations] list and be defined in ART.INI.

CreateInfantrySound=

This specifies the sound to make every time an [InfantryType] is created and can be any sound as defined in the SOUND.INI file. Although this works, it is unused in the game presumably because it gets a little annoying. Gets overridden by the presence of a units CreateSound=.

CreateUnitSound=

This specifies the sound to make every time a [VehicleType] is created and can be any sound as defined in the SOUND.INI file. Although this works, it is unused in the game presumably because it gets a little annoying. Gets overridden by the presence of a units CreateSound=.

CreateAircraftSound=

This specifies the sound to make every time an [AircraftType] is created and can be any sound as defined in the SOUND.INI file. Although this works, it is unused in the game presumably because it gets a little annoying. Gets overridden by the presence of a units CreateSound=.

IFVTransformSound=

This specifies the sound to make when the IFV changes it's turret and can be any sound as defined in the SOUND.INI file. Although this works, it is unused in the game and the only sound you hear is that of the unit entering or leaving the IFV.

SpySatActivationSound=

This specifies the sound to make when the Spy Satellite is activated and can be any sound as defined in the SOUND.INI file.

SpySatDeactivationSound=

This specifies the sound to make when the Spy Satellite is deactivated and can be any sound as defined in the SOUND.INI file.

PsychicSensorDetectSound=

NOTE: this is a spelling mistake in RULES.INI, as it appears as PsychicSensorDetectAttach= which is invalid. PsychicSensorDetectSound= is the correct one which gets parsed. This specifies the sound to make when the Psychic Sensor detects an enemy presence and can be any sound as defined in the SOUND.INI file. This appears not to be hooked up as the game logic related to this also relied upon the PSIWARN.SHP being displayed to indicate that enemy presence. That image is corrupt and is actually the PODRING.SHP (re-sized) from Tiberian Sun and remains in the Tiberian Sun animation palette, although the logic itself which displays that SHP over the intended target of an opponents Nuke does still work.

UpgradeVeteranSound=

This specifies the sound to make when a unit is upgraded from Little Experience to Veteran and can be any sound as defined in the SOUND.INI file.

UpgradeEliteSound=

This specifies the sound to make when a unit is upgraded from Veteran to Elite and can be any sound as defined in the SOUND.INI file.

BaseUnderAttackSound=

This specifies the sound to make when the players base comes under attack and can be any sound as defined in the SOUND.INI file.

BuildingGarrisonedSound=

This specifies the sound to make when a building is garrisoned and can be any sound as defined in the SOUND.INI file.

BuildingRepairedSound=

This specifies the sound to make when a building is repaired as a result of an Engineer being sent in to repair it and can be any sound as defined in the SOUND.INI file.

DefaultChronoSound=

This specifies the default sound to make when an object with Teleporter=yes set moves to a new point on the map if it does not have ChronoInSound= and ChronoOutSound= specified. Although valid and parsed, this does not appear in RULES.INI and may not to be hooked up - it may get over-ridden by the ChronoInSound= and ChronoOutSound= statements in the [AudioVisual] section instead. Can be any sound as defined in the SOUND.INI file.

CheerSound=

This specifies the sound to make when units are commanded to cheer and can be any sound as defined in the SOUND.INI file.

PlaceBeaconSound=

This specifies the sound to make when a beacon is placed on the map in a multiplayer game and can be any sound as defined in the SOUND.INI file.

StartPlanningModeSound=

This specifies the sound to make when a player enters waypoint mode and can be any sound as defined in the SOUND.INI file.

EndPlanningModeSound=

This specifies the sound to make when a player leaves waypoint mode and can be any sound as defined in the SOUND.INI file.

AddPlanningModeCommandSound=

This specifies the sound to make when a player adds a waypoint to the waypoint path when in waypoint mode and can be any sound as defined in the SOUND.INI file.

ExecutePlanSound=

This specifies the sound to make when a player instructs an object top follow the waypoint path and can be any sound as defined in the SOUND.INI file. By default, the game does not have a predefined sound for this.

CratePromoteSound=

This specifies the sound to make when a unit is promoted through a crate powerup and can be any sound as defined in the SOUND.INI file.

CrateMoneySound=

This specifies the sound to make when a player picks up a money crate powerup and can be any sound as defined in the SOUND.INI file.

CrateRevealSound=

This specifies the sound to make when a player picks up a reveal map crate powerup and can be any sound as defined in the SOUND.INI file.

CrateFireSound=

This specifies the sound to make when a player picks up a firepower crate powerup and can be any sound as defined in the SOUND.INI file.

CrateArmourSound=

This specifies the sound to make when a picks up an armor crate powerup and can be any sound as defined in the SOUND.INI file.

CrateSpeedSound=

This specifies the sound to make when a player picks up a speed crate powerup and can be any sound as defined in the SOUND.INI file.

CrateUnitSound=

This specifies the sound to make when a player obtains a unit from a crate powerup and can be any sound as defined in the SOUND.INI file.

GUIMainButtonSound=

This specifies the sound to make when a button is clicked on in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIBuildSound=

This specifies the sound to make when a button is put into place on the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUITabSound=

This specifies the sound to make when a tab or arrow is clicked on in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIOpenSound=

This specifies the sound to make when a drop down menu appears in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUICloseSound=

This specifies the sound to make when a drop down menu is closed in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIMoveOutSound=

This specifies the sound to make when a menu slides out in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIMoveInSound=

This specifies the sound to make when a drop down menu slides in on the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIComboOpenSound=

This specifies the sound to make when a slidebar/text area is clicked in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUIComboCloseSound=

This specifies the sound to make when a slidebar is moved in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

GUICheckboxSound=

This specifies the sound to make when a checkbox is checked/unchecked in the main game menu's (Graphical User Interface). Can be any sound as defined in the SOUND.INI file.

ScoreAnimSound=

This specifies the sound played on the ingame score summary screens and can be any sound as defined in the SOUND.INI file, although this should be of the looping type.

SinkingSound=

This specifies the sound to make when a naval unit sinks and can be any sound as defined in the SOUND.INI file.

ImpactWaterSound=

This specifies the sound to make when an object impacts on water (eg crashing aircraft) and can be any sound as defined in the SOUND.INI file.

ImpactLandSound=

This specifies the sound to make when an object impacts on the ground (eg crashing aircraft) and can be any sound as defined in the SOUND.INI file.

BombTickingSound=

This specifies the sound to make when a Crazy Ivan bomb is ticking while awaiting detonation and can be any sound as defined in the SOUND.INI file.

ChronoInSound=

This specifies the sound to make when an object appears after Chronoshifting and can be any sound as defined in the SOUND.INI file.

ChronoOutSound=

This specifies the sound to make when an object dissapears through being Chronoshifted and can be any sound as defined in the SOUND.INI file.

BombAttachSound=

This specifies the sound to make when a Crazy Ivan bomb is attached to an object and can be any sound as defined in the SOUND.INI file.

YuriMindControlSound=

This specifies the sound to make when Yuri uses his Mind Control weapon and can be any sound as defined in the SOUND.INI file.

UnloadingHarvester=

Specifies the alternate image to be displayed when an Ore Miner unloads at an Ore Refinery. Although parsed, this may not be used in Red Alert 2 as the game defines UnloadingClass= for each Ore Miner since there are now two different ones. This should be a valid unit as listed in the [VehicleTypes] section. This vehicle should be defined as per others, but is usually not buildable.

PoseDir=

This specifies the facing that aircraft adopt when they land at a helipad. Should be between 0 and 7 with 0 representing North and subsequent numbers representing directions moving clockwise around a compass.

DropPodPuff=

This specifies the animation to display when a Drop Pod hits the ground. The animation must be from the [Animations] list and be defined in ART.INI.

WaypointAnimationSpeed=

This specifies the speed at which the animations for waypoints should animate. Appears to be in frames per second, although I am not sure.

BarrelExplode=

This specifies the animation to display when barrels explode. The animation must be from the [Animations] list and be defined in ART.INI.

BarrelDebris=

Lists the voxel animations to display as debris from barrel explosions. The animations must be from the [VoxelAnims] list and be defined in ART.INI.

BarrelParticle=

Lists the particle system to display as debris from barrel explosions. The animation must be from the [ParticleSystems] list and be defined in ART.INI.

NukeTakeOff=

This specifies the animation to display when the Nuclear Missile launches. The animation must be from the [Animations] list and be defined in ART.INI.

Wake=

This specifies the animation to display as a wake effect when a naval, amphibious or hover unit is travelling on or over water. The animation must be from the [Animations]list and be defined in ART.INI.

VeinAttack=

This specifies the animation to display when a unit is being 'attacked' by veins produced from a Veinhole Monster. The animation must be from the [Animations]list and be defined in ART.INI.

DropPod=

This lists the animations to display when a Drop Pod lands and is the effect which 'fades' the Drop Pod away. The first animation in the list is the West-facing version and the second is the East facing version. The animations must be from the [Animations]list and be defined in ART.INI.

DeadBodies=

This lists the animations to display as dead bodies which fade away when infantry units are killed. The animations must be from the [Animations]list and be defined in ART.INI.

MetallicDebris=

This lists the animations to display as metallic debris which which are spawned when an object is destroyed. The animations must be from the [Animations]list and be defined in ART.INI.

BridgeExplosions=

This lists the animations to display as the explosion effect for a bridge being destroyed. The animations must be from the [Animations]list and be defined in ART.INI.

DigSound=

This specifies the sound to make when a Nuclear Missile is launched and is usually of the air raid siren type. If you are trying to enable the subterranean unit logic, you will get this sound whenever they submerge/emerge however there is a way around this by assigning this sound as 'Dummy' and attaching the relevant sounds to the animations in ART.INI. Can be any sound as defined in the SOUND.INI file.

Dig=

This specifies the animation to display when a subterranean unit submerges/emerges. This is parsed, works and is valid in Red Alert 2 although it is disabled by default. The animation must be from the [Animations]list and be defined in ART.INI.

IonBlast=

This specifies the initial animation to display when the Ion Cannon blast hits the ground. This is parsed in Red Alert 2 although the absence of the Ion Cannon probably means it is used elsewhere in the game code for some other effect. The animation must be from the [Animations]list and be defined in ART.INI.

IonBeam=

This specifies the animation to display when the Ion Cannon is fired and is usually of the Tiled=yes type. This is parsed in Red Alert 2 although the absence of the Ion Cannon probably means it is used elsewhere in the game code for some other effect. The animation must be from the [Animations]list and be defined in ART.INI.

WeatherConClouds=

This lists the animations to display for the Weather Storm effect (the clouds). The animations must be from the [Animations]list and be defined in ART.INI.

WeatherConBolts=

This lists the animations to display for the Weather Storm's Lightning Bolts. The animations must be from the [Animations]list and be defined in ART.INI.

WeatherConBoltExplosion=

This specifies the animation to display when a Weather Storm's Lightning Bolt hits the ground or it's target. The animation must be from the [Animations]list and be defined in ART.INI.

ChronoPlacement=

This specifies the animation to display when the Chronosphere 'fires' at it's source (object to be Chronoshifted). The animation must be from the [Animations]list and be defined in ART.INI.

ChronoBeam=

This specifies the initial animation to display when the Chronosphere is 'fired'. Although parsed and valid in Red Alert 2 this is not used. The animation must be from the [Animations]list and be defined in ART.INI. By default this uses the CHRONOBM animation which must be converted from the Tiberian Sun animation palette to be used in Red Alert 2.

ChronoBlast=

This specifies the animation to display when the Chronosphere's target (object to be Chronoshifted) is teleported away. The animation must be from the [Animations]list and be defined in ART.INI.

ChronoBlastDest=

This specifies the animation to display at the location where the Chronosphere will place it's Chronoshifted object(s). The animation must be from the [Animations]list and be defined in ART.INI.

WarpIn=

This specifies the animation to display at the location when an object with the teleport locomotor CLSID appears in a cell. The animation must be from the [Animations]list and be defined in ART.INI. NOTE: although this is parsed, it does not get used by Red Alert 2 which seems to play the animation defined in WarpOut= instead. The WARPIN.SHP animation in Red Alert 2 does not get used and is corrupt - it is actually the WAKE2.SHP image from Tiberian Sun and remains in the Tiberian Sun animation palette.

WarpOut=

This specifies the animation to display at the location when an object with the teleport locomotor CLSID teleports from a cell. The animation must be from the [Animations]list and be defined in ART.INI.

WarpAway=

This specifies the animation to display when an object has been warped out of existance by a weapon with Temporal=yes set. The animation must be from the [Animations]list and be defined in ART.INI.

IronCurtainInvokeAnim=

This specifies the animation to display when the Iron Curtain is used on an object. The animation must be from the [Animations]list and be defined in ART.INI.

WeaponNullifyAnim=

This specifies the animation to display when a projectile hits a unit which has been rendered invulnerable by the Iron Curtain. The animation must be from the [Animations]list and be defined in ART.INI.

ChronoSparkle1=

This specifies the animation to display over an object which is being warped out of existence by a weapon with Temporal=yes set. The animation must be from the [Animations]list and be defined in ART.INI.

InfantryExplode=

This specifies the animation to display when an infantry unit explodes after being hit by a warhead with InfDeath=3 set. The animation must be from the [Animations]list and be defined in ART.INI. NOTE: this is used, although is residual from Tiberian Sun and it was originally intended that the INFDIE.SHP animation sequence was to be used. This image sequence is present in Red Alert 2 although drawn in a bad palette (as it was in Tiberian Sun).

AtmosphereEntry=

This specifies the animation to display when a Drop Pod enters the screen and begins it's descent. The animation must be from the [Animations]list and be defined in ART.INI.

GateUp=

This specifies the sound to make when a structure with Gate=yes set opens. Can be any sound as defined in the SOUND.INI file.

GateDown=

This specifies the sound to make when a structure with Gate=yes set closes. Can be any sound as defined in the SOUND.INI file.

ShroudGrow=

Can be set to 'yes' or 'no' and determines whether or not the shroud grows over time. If set to 'no' there will be no effect, however if you set this to 'yes' and set Shroud=no in the [MultiplayerDialogSettings] section then the shroud will grow over time with the rate of growth set by ShroudRate= (see below).

ScrollMultiplier=

Determines the default scroll speed when a player moves around the map with the cursor.

ShakeScreen=

This is valid and parsed in Red Alert 2 (as it was in Tiberian Sun) although I have yet to see this have any effect in the game. The idea is that you divide the objects Strength= by this value and if the result is greater than 1 then the screen would shake when that object is destroyed. This means bigger objects (ie those with high Strength=) would cause the screen to shake when they were destroyed.

CloakSound=

This specifies the sound to make when an object with Cloakable=yes set reveals or cloaks itself. Can be any sound as defined in the SOUND.INI file. Note that the 'cloaking' logic actually refers to the emerging and submerging logic for submarine and underwater units objects in Red Alert 2.

SellSound=

This specifies the sound to make when an structure is sold. Can be any sound as defined in the SOUND.INI file.

GameClosed=

This specifies the sound to make when a game is closed (ended). Can be any sound as defined in the SOUND.INI file.

IncomingMessage=

This specifies the sound to make when a text message appears on screen. Can be any sound as defined in the SOUND.INI file.

MessageCharTyped=

This specifies the sound to make when a new character appears on a text message with the 'typing' effect. Can be any sound as defined in the SOUND.INI file.

SystemError=

This specifies the generic sound to make for any error in the game. Can be any sound as defined in the SOUND.INI file.

OptionsChanged=

This specifies the sound to make when game options have been changed. Can be any sound as defined in the SOUND.INI file.

GameForming=

This specifies the sound to make when a new game is formed. Can be any sound as defined in the SOUND.INI file.

PlayerLeft=

This specifies the sound to make when a player leaves the game. Can be any sound as defined in the SOUND.INI file.

PlayerJoined=

This specifies the sound to make when a player joins a game. Can be any sound as defined in the SOUND.INI file.

CreditTicks=

This lists the sounds to make when the value of the players credits being held is changed. The first is the sound made when credits increase and the second is the sound made when credits decrease. Can be any sounds as defined in the SOUND.INI file.

BuildingDieSound=

This specifies the sound to make when a structure is completely destroyed. Can be any sound as defined in the SOUND.INI file.

BuildingSlam=

This specifies the sound to make when a structure is placed on the map after being constructed. Can be any sound as defined in the SOUND.INI file.

RadarOn=

This specifies the sound to make when a players radar screen is activated. Can be any sound as defined in the SOUND.INI file.

RadarOff=

This specifies the sound to make when a players radar is deactivated. Can be any sound as defined in the SOUND.INI file.

MovieOn=

This specifies the sound to make when a movie starts playing in the radar screen. Can be any sound as defined in the SOUND.INI file.

MovieOff=

This specifies the sound to make when a movie has finished playing in the radar screen. Can be any sound as defined in the SOUND.INI file.

ScoldSound=

This specifies the generic sound to make when a player does something wrong in any of the game menus. Despite the presence of a similar statement in Tiberian Sun, there is no statement to specify the sound for the 'build queue' being full. Can be any sound as defined in the SOUND.INI file.

TeslaCharge=

This specifies the sound to make when a Tesla Coil charges before firing. Can be any sound as defined in the SOUND.INI file.

TeslaZap=

This specifies the default sound to make when a Tesla Coil fires. NOTE: although parsed and working, this is not used in Red Alert 2 as the ChargeAnim= logic means the sound attached to the weapon itself is used instead. Can be any sound as defined in the SOUND.INI file.

BuildingDamageSound=

This specifies the sound to make when a structure is damaged. This gets played twice - when the health bar goes from Green to Yellow and again when it goes from Yellow to Red. Can be any sound as defined in the SOUND.INI file.

ChuteSound=

This specifies the sound to make when a parachute opens. Can be any sound as defined in the SOUND.INI file.

GenericClick=

This specifies the generic sound to make when a button or icon is clicked in the game. Can be any sound as defined in the SOUND.INI file.

GenericBeep=

This specifies the generic sound to make when a player clicks an option which is not available (for example moving the sidebar down when there are no more options in it). Can be any sound as defined in the SOUND.INI file.

BuildingDrop=

This specifies the sound to make when a unit deploys into a structure. Appears to be a duplication of BuildingSlam= as I haven't noticed any difference in use between the two. Can be any sound as defined in the SOUND.INI file.

StopSound=

This specifies the generic sound to make when units are commanded to stop through the hotkey defined in KEYBOARD.INI or through the Advanced Command Bar (if defined in UI.INI). Can be any sound as defined in the SOUND.INI file.

GuardSound=

This specifies the generic sound to make when units are commanded to guard through the hotkey defined in KEYBOARD.INI or through the Advanced Command Bar (if defined in UI.INI). Can be any sound as defined in the SOUND.INI file.

ScatterSound=

This specifies the generic sound to make when units are commanded to scatter through the hotkey defined in KEYBOARD.INI. Can be any sound as defined in the SOUND.INI file.

DeploySound=

This specifies the generic sound to make when units are commanded to deploy by double clicking them, through the hotkey defined in KEYBOARD.INI or through the Advanced Command Bar (if defined in UI.INI). NOTE: although parsed and valid in Red Alert 2 this is not used, probably because this is a generic sound made by all units regardless of what they are or what side they belong to. Can be any sound as defined in the SOUND.INI file but is usually a voice.

StormSound=

This specifies the sound to make when a Weather Storm starts. Can be any sound as defined in the SOUND.INI file.

LightningSounds=

This specifies the sound to make for various lightning bolts whether or not they are part of the Weather Storm. Can be any sound as defined in the SOUND.INI file.

ShellButtonSlideSound=

This specifies the sound to make when the buttons in the game menu's slide into position. NOTE: this is valid and parsed but for some reason this sound is not defined although there is a sound so another keyword must be used for this. Can be any sound as defined in the SOUND.INI file.

TreeFire=

This lists the animations to display as small and large fires respectively which are attached to burning trees. NOTE: although this is parsed and is valid in Red Alert 2 the 'forest fires' logic is partly disabled thus these do not display (even though trees can be burnt!). The animations must be from the [Animations] list and be defined in ART.INI.

OnFire=

This lists the animations to display as flames when something catches fire, and is listed in order of decreasing size. There must be 3 in this list for the logic to work. NOTE: although this is parsed and is valid in Red Alert 2 the 'forest fires' logic is partly disabled thus these do not display. The animations must be from the [Animations] list and be defined in ART.INI.

FlamingInfantry=

This defines the animation sequence to display when an infantry unit is destroyed as a result of being hit by a warhead with InfDeath=4 set. The animation must be from the [Animations] list and be defined in ART.INI.

InfantryHeadPop=

This defines the animation sequence to display when an infantry unit is destroyed as a result of being hit by a warhead with InfDeath=6 set. The animation must be from the [Animations] list and be defined in ART.INI.

InfantryNuked=

This defines the animation sequence to display when an infantry unit is destroyed as a result of being hit by a warhead with InfDeath=7 set. The animation must be from the [Animations] list and be defined in ART.INI.

Behind=

This defines the animation to display when an object is behind another and thus can be 'seen'. The animation must be from the [Animations] list and be defined in ART.INI.

FirestormActiveAnim=

This defines the animation to display when the structure defined by GDIFirestormGenerator= has been damaged and the player uses the Repair sidebar-icon to fix it. The animation must be from the [Animations] list and be defined in ART.INI. This is residual from an original Tiberian Sun concept where certain structures were to have specific animation sequences when they had their power toggled on/off.

FirestormIdleAnim=

This defines the animation to display when the Firestorm Defense is idle. NOTE: although parsed and valid, this is unused in Red Alert 2 as the Firestorm Defense logic is disabled. The animation must be from the [Animations] list and be defined in ART.INI.

FirestormGroundAnim=

This defines the animation to display when the Firestorm Defense is at ground level. NOTE: although parsed and valid, this is unused in Red Alert 2 as the Firestorm Defense logic is disabled. The animation must be from the [Animations] list and be defined in ART.INI.

FirestormAirAnim=

This defines the animation to display when the Firestorm Defense is high in the air. NOTE: although parsed and valid, this is unused in Red Alert 2 as the Firestorm Defense logic is disabled. The animation must be from the [Animations] list and be defined in ART.INI.

MoveFlash=

This defines the animation to display as a cursor effect at the cell to which an object is ordered to move. The animation must be from the [Animations] list and be defined in ART.INI.

EliteFlashTimer=

This specifies the number of frames that a newly promoted Elite unit will flash for.

Parachute=

This defines the animation to display for the parachute used by paratroopers. The animation must be from the [Animations] list and be defined in ART.INI.

BombParachute=

This defines the animation to display for the parachute used by bombs dropped. NOTE: this is residual from Red Alert, remains valid and is parsed, although it is not known how (or even if) it gets used. The animation must be from the [Animations] list and be defined in ART.INI.

SmallFire=

This defines the animation to display for the small fires generated after something has burned or been napalmed. NOTE: this is residual from Red Alert, remains valid and is parsed, although it is not known how (or even if) it gets used. The animation must be from the [Animations] list and be defined in ART.INI.

LargeFire=

This defines the animation to display for the large fires generated after something has burned or been napalmed. NOTE: this is residual from Red Alert, remains valid and is parsed, although it is not known how (or even if) it gets used. The animation must be from the [Animations] list and be defined in ART.INI.

AllyReveal=

Determines whether or not armies automatically reveal their units, radar maps, and areas of the shroud they have uncovered to each other when they form an alliance.

ConditionRed=

When an object is damaged to this percentage of it's original Strength= value then the color of it's health bar turns red.

ConditionYellow=

When an object is damaged to this percentage of it's original Strength= value then the color of it's health bar turns yellow.

DropZoneRadius=

Specifies the distance, in cells, that map is revealed around a drop zone flare. This is used only by the relevant action within a map file.

DropZoneAnim=

This defines the animation to display for the drop zone flare and is triggered only through the relevant action in a map file. NOTE: this is residual from Red Alert and Tiberian Sun, remains valid and is parsed, although it does not get used. The BEACON.SHP animation in Red Alert 2 does not get used and is corrupt - it is actually the same SHP image from Tiberian Sun and remains in the Tiberian Sun animation palette. The animation must be from the [Animations] list and be defined in ART.INI. This can still be made to work through the relevant action from within a map file.

EnemyHealth=

Determines whether or not a player sees an enemy health bar if that object is selected. Appears to have no effect as, unlike all previous C&C games, the cursor logic in Red Alert 2 means you see health bars without selecting objects anyway by leaving the cursor over them.

Gravity=

Sets a constant used in calculating the gravity effect on ballistic missiles.

IdleActionFrequency=

Determines the average time, in minutes, between infantry units performing idle actions (ie their idle sequence is displayed instead of their standing/facing one).

MessageDelay=

Determines the time duration, in minutes, that multiplayer messages are displayed over the map.

MovieTime=

Determines the time, in minutes, that the movie recorder will record when activated. You can use Red Alert 2 to record movies of the game being played in Westwood's IPB format, and these can also be played using Red Alert 2. See the RA2.INI guide for details of doing this.

NamedCivilians=

Specifies whether or not you see 'Civilian' or the correct name over civilian structures and units. Appears to have no effect as, unlike previous C&C games, the addition of the UIName= system to Red Alert 2 means you always see an objects correct name when you leave the cursor over it anyway, although the RA2.CSF file does contain strings for generic enemy objects - TXT_ENEMY_SOLDIER, TXT_ENEMY_STRUCTURE and TXT_ENEMY_VEHICLE.

SavourDelay=

Determines the delay, in minutes, between the mission ending and the ending movie playing.

ShroudRate=

Determines the delay, in minutes, between each shroud creep process (0 means no shadow creep). It is a good idea to set this to '0' unless you are going to make use of the shroud (for example in a multiplayer game mode) as doing so will speed up the game slightly.

FogRate=

Determines the delay, in minutes, between each growth of the Fog Of War. NOTE: although valid and parsed, it appears that this logic has been disabled in Red Alert 2 although FOG.SHP is still in the game files and referred to by the game code.

IceGrowthRate=

Time, in minutes, between which to apply ice growth. It is not known if this logic still works in Red Alert 2 (although these keywords are parsed) as the Isometric Tile Types for the ice itself are not in the game files as they were in Tiberian Sun.

IceSolidifyFrameTime=

How many frames between which ice is cracked and when it gets solidified. It is not known if this logic still works in Red Alert 2 (although these keywords are parsed) as the Isometric Tile Types for the ice itself are not in the game files as they were in Tiberian Sun (adding them, or making new ones may enable this logic).

IceCrackSounds=

This specifies the sounds to make when ice is cracked or broken and can be any sound as defined in the SOUND.INI file. It is not known if this logic still works in Red Alert 2 (although these keywords are parsed) as the Isometric Tile Types for the ice itself are not in the game files as they were in Tiberian Sun (adding them, or making new ones may enable this logic).

AmbientChangeRate=

Time, in minutes, between ambient light recalculations.

AmbientChangeStep=

Step rate for gradually changing ambient lighting.

SpeakDelay=

Delay, in minutes, between EVA or Sofia repeating advice to the player. The voices used by EVA and Sofia are all controlled, and can be edited, through the EVA.INI file.

TimerWarning=

Used by the triggers and actions from within a map file, this tells the game how many minutes should be left on the global timer when it should display the time in red. Appears not to work even though it is parsed as the game always seems to default to your house color for all displayed text.

ExtraUnitLight=

Factor to add to ambient light value around vehicles to make them glow.

ExtraInfantryLight=

Factor to add to ambient light value around infantry to make them glow.

ExtraAircraftLight=

Factor to add to ambient light value around aircraft to make them glow.

EMPulseSparkles=

This specifies the animation to display when a warhead with EMEffect=yes set is fired. This is parsed, works and is valid in Red Alert 2 although unfortunately the EMP logic is disabled. The animation must be from the [Animations] list and be defined in ART.INI.

LocalRadarColor=

This is the 24-bit R,G,B value of the color which the player appears on the radar as in the single player campaign. Is usually overridden in map files so it serves little purpose. No matter what house color you choose, you will always show on radar as this color.

[CrateRules]

CrateMaximum=

The maximum number of crates which can be on the map at any one time. For internal table reasons and stability, I recommend sticking with the default value of 255.

CrateMinimum=

Mimimum number of crates to be on the map at any given time. This is normally one crate per human player although it will never be below this number.

CrateRadius=

The radius, in cells, that crate powerup bonuses (eg armor or speed) will affect.

CrateRegen=

Average time, in minutes, between which random crate generation occurs.

SilverCrate=

The type of powerup found in single player campaign games. This can be any valid type from the [Powerups] section.

SoloCrateMoney=

Amount of money to give a player from a money crate in the single player campaign.

UnitCrateType=

Can be used to specify the unit which a player gets from a crate. If this is set to 'none' then the game will pick a unit randomly from all of those units which do not have CrateGoodie=no set in their entry. This means that you do not have to put CrateGoodie=yes in a units entry to render it eligible to be a crate goodie.

WoodCrate=

Type of crate powerup for the standard wood crate in the single player campaign. This can be any valid type from the [Powerups] section.

HealCrateSound=

Sound effect to play when a 'Heal Base' crate is picked up. This can be any valid sound defined in SOUND.INI.

WoodCrateImg=

This determines the [OverlayType] to use as an image for the wood crate. Can be any valid type from the [OverlayTypes] section.

CrateImg=

This determines the [OverlayType] to use as an image for the standard crate. Can be any valid type from the [OverlayTypes] section.

FreeMCV=

Can be set to 'yes' or 'no' and determines if a player will get an MCV in a crate if they have no buildings but still have sufficient money to re-establish a base (ie contstruct an Ore Refinery). Applies only to multiplayer games.

[CombatDamage]

AmmoCrateDamage=

Since Ammo Crates are an overlay type the amount of damage they inflict when destroyed is specified with this statement.

IonCannonDamage=

Specifies the amount of damage inflicted by the Ion Cannon. This is most probably used for some other purpose in Red Alert 2 as there is no Ion Cannon and this keyword is still parsed. The warhead defined with the IonCannonWarhead= statement is used to apply this damage.

RailgunDamageRadius=

Specifies the radius of effect, in cells, that AmbientDamage= is applied to when weapons with IsRailgun=true set are fired.

TiberiumExplosive=no

Can be set to 'yes' or 'no' and determines if Ore and gems are extra explosive. This logic is disabled in Red Alert 2 although the keyword is parsed and valid.

Scorches=

List of smallest scorch mark images. Must be from the [SmudgeTypes] list.

Scorches1=

List of small scorch mark images. Must be from the [SmudgeTypes] list.

Scorches2=

List of big scorch mark images. Must be from the [SmudgeTypes] list.

Scorches3=

List of larger scorch mark images. Must be from the [SmudgeTypes] list.

Scorches4=

List of largest scorch mark images. Must be from the [SmudgeTypes] list.

TiberiumExplosionDamage=

The amount of damage dealt out by the explosion in a big Gem (Ore) chain reaction. This logic is disabled in Red Alert 2 although the keyword is parsed and valid.

TiberiumStrength=

The higher this value the harder it is to get Gems (Ore) to explode. This logic is disabled in Red Alert 2 although the keyword is parsed and valid.

Craters=

Lists the images which can be used as craters. Must be from the [SmudgeTypes] list and is in order of increasing crater size.

AtomDamage=

This specifies the damage points inflicted when a nuclear bomb explodes regardless of it's source. This is residual from Red Alert and although it is parsed it appears not to be used in favor of the damage inflicted by the Nuke weapon itself.

BallisticScatter=

This specifies the maximum distance in cells that inaccurate ballistic projectiles will scatter.

BridgeStrength=

This specifies the strength of bridges as they are not [BuildingTypes]. Smaller values here make the bridges easier to destroy.

C4Delay=

Time, in minutes, to delay after placing C4 before the target object will explode.

C4Warhead=

This specifies the warhead used by C4 type weapons. This also sets a timer which forces the destruction of an object and is used throughout the game code to mean 'absolute damage'. Must be specified in the [Warheads] section and be defined as per all other warheads. Note that a structure with CanC4=false set will not be affected by this.

V3Warhead=

This specifies the warhead used by the V3 Rocket and must be specified in the [Warheads] section and be defined as per all other warheads.

DMislWarhead=

This specifies the warhead used by the Drednaught's Missile and must be specified in the [Warheads] section and be defined as per all other warheads.

V3EliteWarhead=

This specifies the warhead used by the V3 Rocket when at Elite status and must be specified in the [Warheads] section and be defined as per all other warheads.

DMislEliteWarhead=

This specifies the warhead used by the Drednaught's Missile when at Elite status and must be specified in the [Warheads] section and be defined as per all other warheads.

Crazy Ivan Stuff

IvanWarhead=

Since Ivan's weapon plants the bomb, exploding the bomb needs it's own warhead. This specifies the warhead used and must be specified in the [Warheads] section and be defined as per all other warheads.

IvanDamage=

Since weapons don't have their own life, damage is needed seperately. This is the amount of damage Ivan's bombs inflict.

IvanTimedDelay=

Delay, in frames, of an Ivan time bomb.

CanDetonateTimeBomb=

Can be set to 'yes' or 'no' and determines whether or not double-click functionality is enabled on enemy bombs. If set to yes, you can click once to plant a bomb on the enemy and then click that enemy unit again to detonate the bomb.

CanDetonateDeathBomb=

Can be set to 'yes' or 'no' and determines whether or not double-click functionality is enabled on your own units. If set to yes, you can click once to plant a bomb on one of your own units and then click that unit again to detonate the bomb. Note that neither of these two statements gives double-click functionality back to Ivan himself.

IvanIconFlickerRate=

This specifies the number of frames between which the icon goes back and forth within one of the six 2-frame animations of BOMBCURS.SHP (although that makes 12 frames, the 13th frame is the 'skull' version indicating detonation).

DeathWeapon=

This specifies the default death weapon for those objects which have one. I have experienced errors when changing this, it is best to leave it at it's default setting as I suspect the logic may be hard-coded and you cant use the unit's weapon since the spread is now fixed.. In either case, you should ensure that this is set to an existing weapon.

IronCurtainDuration=

Specifies the duration of the Iron Curtain in frames.

FirestormWarhead=

This specifies the warhead used by the Firestorm Defense when active and must be specified in the [Warheads] section and be defined as per all other warheads.

IonCannonWarhead=

This specifies the warhead used by the Ion Cannon and must be specified in the [Warheads] section and be defined as per all other warheads.

VeinholeWarhead=

This specifies the warhead used by the Veinhole Monsters veins and must be specified in the [Warheads] section and be defined as per all other warheads.

Particle System Defaults

DefaultFirestormExplosionSystem=

The particle system used when the Firestorm Defense destroyes somethign that collides with it when active. This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultLargeGreySmokeSystem=

The particle system used for generic large smoke effects. This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultSmallGreySmokeSystem=

The particle system used for generic small smoke effects. This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultSparkSystem=

The particle system that appears when sparks are generated by an event or unit. This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultLargeRedSmokeSystem=

The particle system that appears when a larger object is badly damaged (ie health is in the red). This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultSmallRedSmokeSystem=

The particle system that appears when a small object is badly damaged (ie health is in the red). This must be listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultDebrisSmokeSystem=

The particle system that appears when debris types are spawned. This must be listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultFireStreamSystem=

The particle system that appears when a unit generates 'true' flames. This must be listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultTestParticleSystem=

It is not known what this particle system is used for. This must be listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

DefaultRepairParticleSystem=

The particle system that appears when a unit repairs another unit. This must be a listed in the [ParticleSystems] section as well as being defined as all other particle systems in RULES.INI.

Crush=

If a unit with Crusher=yes set is this close (in cells) to a target that has Crushable=yes set, then it will attempt to crush that target instead of firing at it. Applies only to the AI.

ExpSpread=

Specifies the cell damage spread per 100 damage points for exploding object types (if they have Explodes=yes set).

FireSupress=

Specifies the radius, in cells, from the target to look for friendly objects and thus discourage firing upon if found. This is used by weapons which have Supress=yes set and is useful if that weapon has a wide area of effect but you don't want it to fire thus damage or destroy it's own units if they are nearby.

FlameDamage=

Specifies the warhead used when an object is in flames. Must be specified in the [Warheads] section and be defined as per all other warheads. The code uses this warhead to cause adjacent objects to catch fire too.

FlameDamage2=

Specifies the warhead used when an object is in flames. Must be specified in the [Warheads] section and be defined as per all other warheads. The code uses this warhead to ensure that flames will not to spread to adjacent objects or tiles.

HomingScatter=

Maximum scatter distance in cells for projectiles which have Inaccurate=yes set.

MaxDamage=

Maximum amount of damage inflicted per shot after all adjustments. This has been increased dramatically since Tiberian Sun to prevent boats from dying from SEALs.

MinDamage=

Minimum amount of damage inflicted per shot after all adjustments. Damage inflicted will never fall below this value. Although defaulted to 1, this may now be obsolete as it's presence may prevent 'healing' type warheads from working.

PlayerAutoCrush=

Can be set to 'yes' or 'no' and determines if players units that have Crusher=yes set will will automatically try to crush enemy units that have Crushable=yes set.

PlayerReturnFire=

Can be set to 'yes' or 'no' and determines if players units will act more aggresively and automatically return fire on enemy units if engaged.

PlayerScatter=

Can be set to 'yes' or 'no' and determines if players units will automatically scatter of their own accord from threats and damage.

SplashList=

List of animations to display when a warhead with Conventional=yes set impacts on water. The animations must be from the [Animations] list and be defined in ART.INI.

TreeTargeting=

Can be set to 'yes' or 'no' and determines whether or not players automatically get a targeting cursor over trees. Enabling this could cause problems when players try to acquire a Mirage Tank as a potential target as they will no longer be able to differentiate between trees and disguised Mirage's. The [TankMakeUpKit] weapon does not use this logic, as TerrainFire=yes allows that weapon to fire on [TerrainTypes] (and thus trees) anyway.

TurboBoost=

Speed multiplier for weapons which have TurboBoost=yes set when firing upon aircraft. Surface-to-air missiles should have this characteristic.

Incoming=

If an incoming projectile is as slow or slower than this, then the object in the target cell will try to run away. Weapons with Lobber=yes and projectiles with Arcing=true set should have this characteristic.

CollapseChance=

The percentage chance that a destroyable cliff will collapse when hit. Although the images and targeting logic for destroyable cliffs exist in Red Alert 2, the logic allowing them to be destroyed appears to be disabled.

BerzerkAllowed=

Can be set to 'yes' or 'no'. This determines whether or not units with Cyborg=yes set go berzerk when they reach half damage (in other words they start to equally consider friendly units as targets in their threat scan). Although this is parsed in Red Alert 2 I have not seen any effect of it when used.

[Radiation]

RadDurationMultiple=

Number of frames per level of radiation that the site lasts. The level of radiation is determined by the weapons RadLevel= statement. When the radiation level reaches zero, the rad site deletes itself, thus the site lasts the number of frames derived by the equation RadLevel x RadDurationMultiple.

RadApplicationDelay=

Delay, in frames, between times when radiation is applied to units.

RadLevelMax=

Maximum radiation allowable in a cell. The cell can actually contain more radiation than you define here but it will only damage as if it had this value.

RadLevelDelay=

Delay, in frames, between radiation level decrements. The level updates this often but the rate is still as specfied in RadDurationMultiple=.

RadLightDelay=

Delay, in frames, between radiation lighting intensity decrements. This should never be less than the RadLevelDelay=, as it will produce no visual benefit and just waste processor cycles thus reduce game speed and performance.

RadLevelFactor=

This scales the damage done by a given radiation level.

RadLightFactor=

Scales the factor that brightness plays in the radiation display.

RadTintFactor=

Scales the factor that tint plays in the radiation display.

RadColor=

The color of the radiation in R,G,B format.

RadSiteWarhead=

Specifies the warhead used by the irradiated tiles within a rad site. Must be specified in the [Warheads] section and be defined as per all other warheads.

[ElevationModel]

ElevationIncrement=

Number of levels between source and target for a range bonus to take effect. Used by projectiles which have SubjectToElevation=yes set.

ElevationIncrementBonus=

Amount of range bonus to add for each elevation increment (not map level) between source and target. Used by projectiles which have SubjectToElevation=yes set. For example, if ElevationIncrement= is set to 4, this value will get applied for every 4 levels between source and target, not once for each of the levels between them.

ElevationBonusCap=

This is used to place a cap on range bonuses so such projectiles can not attain an almost unlimited range, and prevent average scanning cost for rare situations. Used by projectiles which have SubjectToElevation=yes set.

[WallModel]

AlliedWallTransparency=

Can be set to 'yes' or 'no' and determines whether or not walls have an effect on the shots of units owned by an army allied with the owner of that wall. If this is set to 'yes' then walls are considered transparent to units belonging to a side with which the walls owner is allied, thus his allies could not destroy his walls either intentionally, or inadvertently whilst engaging enemy units.

WallPenetratorThreshold=

The amount of damage a unit must inflict before it attempts to fire through walls between it and it's target.

